Math 115A, Lecture 2

 Linear Algebra

 Linear Algebra}

Midterm 1

Instructions: You have 50 minutes to complete the exam. There are five problems, worth a total of fifty points. You may not use any books or notes. Partial credit will be given for progress toward correct proofs.

Write your solutions in the space below the questions. If you need more space use the back of the page. Do not forget to write your name in the space below.

Name: \qquad

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

Problem 1.

Decide whether each of the following sets V with the operations of addition and scalar multiplication specified is a vector space. Justify your answers.
(a) [5pts.] $V \subset \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is the set of 2×2 matrices with determinant zero, and the operations inherited from $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. (Recall that if

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is a 2×2 matrix, the determinant is $a d-b c$.)
(b) [5pts.] $V=\left\{\left(a, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$ with operations

$$
\begin{aligned}
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right) & =\left(a_{1}+2 b_{1}, a_{2}-3 b_{2}\right) \\
c\left(a_{1}, a_{2}\right) & =\left(c a_{1}, c^{2} a_{2}\right)
\end{aligned}
$$

Problem 2.

Consider the subset V of polynomials $P_{2}(\mathbb{R})$ such that, for any $a x^{2}+b x+c$ in V, we have $a+b+c=0$.
(a) [5pts.] Prove that V is a subspace of $P_{2}(\mathbb{R})$.
(b) [5pts.] Find the dimension of V.

Problem 3.

Consider the set $S=\{(2,3,5),(1,0,-1),(-2,1,7),(1,4,11)\} \subset \mathbb{R}^{3}$.
(a) [5pts.] Is S linearly independent or linearly dependent? Justify your answer without doing a computation.
(b) [5pts.] Find a subset of S that is a basis for \mathbb{R}^{3}.

Problem 4.

Let S_{1} and S_{2} be subsets of a vector space V.
(a) [5pts.] Prove that $\operatorname{span}\left(S_{1} \cap S_{2}\right) \subset \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.
(b) [5pts.] Give an example in which the sets above are equal and one in which they are unequal.

Problem 5.

Recall that if W_{1} and W_{2} are subspaces of a vector space V, then

$$
W_{1}+W_{2}=\left\{w_{1}+w_{2}: w_{1} \in W_{1}, w_{2} \in W_{2}\right\}
$$

If in addition $W_{1} \cap W_{2}=\emptyset$, then we call this space $W_{1} \oplus W_{2}$. If $W_{1} \oplus W_{2}=V$, then W_{2} is said to be a complement of W_{1}.
(a) [5pts.] Prove that the $x y$-plane and the z-axis are complements in \mathbb{R}^{3}.
(b) [5pts.] Let V be an n-dimensional vector space, and W_{1} a k-dimensional subspace of V. Prove that W_{1} has a complement; that is, prove that there exists W_{2} such that $W_{1} \oplus W_{2}=V$. [Hint: Start with a basis for W_{1}, and extend to a basis for V. Now you should be able to find a candidate basis for W_{2}.]

